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Phase separation is induced in the one-dimensional Ising chain (or lattice-gas 
model of a fluid) by means of an external field that changes sign in the middle 
of the chain. The magnetization profile (or density profile of the analogous 
fluid) is obtained analytically. It is found to decay exponentially rapidly to the 
bulk-phase magnetizations (or densities), the exponential decay parameter being 
the correlation length in the bulk phases in the presence of the field. This is in 
accord with earlier theoretical ideas. The interfacial tension is also obtained 
analytically. In an appropriately defined limit of large neighboring-site spin-spin 
interactions and small external field the interface becomes infinitely broad while 
the amplitude of the profile and the interracial tension both vanish, in close 
imitation of the approach to a critical point in a real fluid. In this asymptotic 
limit the interfacial tension is related to the amplitude of the profile in the way 
that is predicted by earlier theories of interfaces near critical points, with 
critical-point exponents now those appropriate to one dimension. The exact 
interfaeial profile and tension are used to test several approximations, including 
a corrected form of the "barometric law" and local (square-gradient) and 
nonlocal forms of the van der Waals theory. 

KEY WORDS: Ising chain; phase separation; interface; magnetization or 
density profile; surface tension. 

1. MODEL INTERFACE 

We present  an exac t ly  soluble  one -d imens iona l  mode l  o f  an interface  be tween  

coexis t ing  phases ,  and with  it we test  some  ear l ier  hypo theses  and approx-  

ima t ions  in the theory  o f  in terfaces  in three d imens ions .  Our  a im is thus the 

same  as that  o f  one  o f  us ~la) and of  A b r a h a m  and one  o f  us (lb) who  used 

exac t  me thods  to ana lyze  the in ter face  o f  the d -d imens iona l  spher ica l  mode l  

in the presence  o f  an external  f ield ident ica l  to the one  we shall  use in our  
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model. Also related to our work is that of Clayton and Woodbury, (2~ who 
studied field-induced interfaces in an Ising strip (although they then let the 
width of the strip increase, to make the model two-dimensional, whereas ours 
is always one-dimensional); that of Compagner, (3~ who studied a one- 
dimensional system of attracting hard rods in the presence of gravity; of 
Percus, (4a) Robledo, (4b) and Robledo and Varea, (4c) who treated the hard-rod 
system in the presence of an arbitrary external field; of van Leeuwen and 
Hilhorst, (5) who analyzed the solid-on-solid model in two dimensions in the 
presence of various external fields; of Ebner et al., ~6~ who treated a one- 
dimensional Lennard-Jones system both numerically and by approximate 
methods; and of Kinzel, (7) who studied the interface between phases in a 
one-dimensional Potts model (but with nonmacroscopic "phases" induced by 
boundary conditions rather than by an external field). 

Our model is the one-dimensional Ising chain with nearest-neighbor 
interactions (or the equivalent lattice gas). We index the sites of the chain 
with a position coordinate z, and we associate with the site at z a spin 
variable sz=  • Neighboring spins, at sites z and z + 1, interact with 
energy -Jszs~+ 1 with J > 0, so the interaction favors parallel spin alignment. 
There is no spontaneous phase separation in such a one-dimensional system, 
but we induce it with an external field ~,~(z) that changes sign in the middle 
of the chain (Fig. la): 

I 
H, z > 0  

JK(z) = 0, z = 0 (1.1) 
--H, z < 0 

with H > 0. The energy of interaction between the spin and field at z is 
~2"(z) sz, so H, like J, has the dimensions of an energy. 

Had there been no spin-spin interaction ( J : 0 ) ,  the resulting 
magnetization profile rn(z), 

m(z) = <s~> (1.2) 

would have had the same z dependence as the external field ~f(z) ,  as 
pictured in Fig. la; but because there is an interaction that favors parallel 
alignment (J > 0), the step is smoothed and the resulting profile m(z) is as in 
Fig. lb. (The density profile of the corresponding lattice gas is �89 + re(z)].) 
By symmetry, 

m ( - z )  = - m ( z )  (1.3) 

For convenience we imagine ~ ( z )  and re(z) to be functions of a continuous 
variable z, and we picture them that way in Fig. 1, although they are defined 
only for integer z. 
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Fig. 1. (a) Field ~.W(z)= H (for z > 0), 0 (at 
z = 0), --H (for z < 0), (b) Magnetization profile 
re(z). 
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At large Izl, where m(z) is close to its asymptot ic  limits, we have the 
two coexisting bulk phases, each one uniform. Between them, at small t z I, is 
the interface, which is the object of  our study. As we expect and shall see, 
the bulk phase at z > 0 is the same (in particular,  its magnetizat ion m(oo)  is 
the same) as that in a model with the same J but with a uniform field H at 
all z; while the phase at z < 0 is the same (in particular,  its magnetizat ion 
m ( - o o )  is the same) as in a model with the same J but with a uniform field 
- H  at all z. Thus, each phase influences the other only over a finite distance 
definable as the thickness of  the interface. This thickness is microscopic;  
again as we expect and shall see, it is essentially the correlation length in a 
model with the same J but with a uniform field H at all z. The interfacial 
thickness is finite because the field, in addition to creating the interface, also 
pins it in place and thus keeps it f rom wandering and smearing out the 
profile m(z). 

In Section 2 we display the model 's  magnetizat ion profile m(z), and in 
Section 3 the interfacial tension. The latter, which in this one-dimensional 
system has the dimensions of  an energy, is the difference between the free 
energy of the model system pictured in Fig. 1 and that of  a reference system 
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which is the same as the model system except that the field has the uniform 
value H (or, equivalently, - H )  at all z. We separate the interfacial free 
energy of the present model into an extrinsic part and an intrinsic part, of 
which the former is the integrated direct interaction of the spins in the profile 
m(z) with the external field, while the latter is their integrated direct 
interaction with each other. Both parts of the interfacial tension depend on 
both J and H because the profile m(z) does. It is the intrinsic part that is to 
be compared with the surface tension in models in which phase separation is 
spontaneous. 

In Section 4 we observe that the limit J / k T ~  co and 
(H/kT) exp(2./ /kT)~ 0 (with k Boltzmann's constant and T the absolute 
temperature) imitates the approach to a critical point, for in that limit the 
bulk magnetizations m(oo) and m ( - o o ) [ = - m ( o o ) ] ,  the reciprocal ~-1 of the 
interracial thickness ~, and a/kT, where a is the interracial tension, all 
vanish. Further, we find that a/kT, ~, and rn(oo) are then asymptotically 
related in just the way scaling theories have suggested they are related in real 
interfaces, although here the critical-point exponents are those appropriate to 
one dimension. In this limit, also, the extrinsic part of a becomes negligible 
compared with the intrinsic part, so the separation of a into 'its two 
components is inconsequential. 

Since the magnetization (or density) profile and interracial tension in 
this model are known explicitly and exactly, we are able to use them to test 
some approximations that are like ones commonly applied in the theory of 
interfaces. These include a corrected form of the "barometric law" and 
various local (square-gradient) and nonlocal mean-field theories. The approx- 
imate and exact profiles are compared in Section 5, and the approximate and 
exact surface tensions in Section 6. Our results are discussed briefly in 
Section 7. 

2. MAGNETIZATION (DENSITY) PROFILE 

The model is just a one-dimensional Ising model with nearest-neighbor 
interactions, so even with the external field (1.1) the profile m(z)(=(sz) ) may 
be found by elementary transfer-matrix methods. One finds that 

m(z) = m(ov)(1 - e-Z/g), z >/0 (2.1) 

with 

e-1/~ = cosh(H/kT) -- [sinh2(H/kT) + e 4J/kr] 1/2 
cosh(H/kT) + [sinh2(H/kT) + e-4J/kT] 1/2 (2.2) 



Field-Induced Phase Separation in One Dimension 423 

and 

rn(oo) = {1 + [e 2s/kr sinh(H/kT)]-2} -1/2 (2.3) 

m(z) for z < 0 is obtained from (2.1) by (1.3). 
The profile (2.1) with (1.3) is qualitatively of the form anticipated in 

Fig. lb. Thought of as a function of a continuous variable z it has a discon- 
tinuous second derivative at z = 0. This is an artificiality of the model, but it 
is too mild a singularity to be readily visible. We refer to it again in 
Section 5. 

The ~ and m(oo) given by (2.2) and (2.3) are precisely the correlation 
length (i.e., the exponential decay parameter of the spin-spin correlation 
function) in units of the lattice spacing, (Sa) and the magnitude of the uniform 
magnetization per spin, (ab~ respectively, for the Ising chain in a uniform field 
of magnitude H. Thus, although in the present model the phase separation is 
not spontaneous but is induced by the external field (1.1), the profile m(z) 
nevertheless has the form that, at least near the critical point, it is found to 
have in theories of the type of the van der Waals theory(9); viz., 

m(z) = m*f(z/~) (2.4) 

where m* is the spontaneous magnetization, ~ the correlation length in the 
bulk phases, a n d f  a universal odd function of argument z/r w i t h f ( o o ) =  1. 
That the profile in our model is of the form (2.4) for all values of H/kT and 
J/kT, and not only as the critical point is approached, is an accident of the 
model's simplicity and not otherwise significant. 

3. SURFACE TENSION 

The free energy of the model pictured in Fig. 1 is greater than that of a 
reference system of the same number of sites, with the same spin-spin 
interactions, but with a uniform field H at every site. The free energy of this 
one-phase reference system is an even function of H, and, per site, is the 
same as that of either of the two limiting bulk phases in the model two-phase 
system. Therefore, in the thermodynamic limit--i.e., in the limit in which the 
number of sites in the model and in the reference system, while remaining 
equal, both become infinite, while the interface in the former remains in the 
middle--the difference between the free energies of the two systems is just 
that of the interface. It is the one-dimensional analog of a surface tension in 
three dimensions or of a boundary tension in two dimensions, although here 
it has the dimensions of an energy rather than of an energy per unit area or 
length. Nevertheless, because of the analogy with three dimensions we call it 
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the "surface tension" of our one-dimensional model, and symbolize it by o. 
We may then evaluate it as 

a /kT  = - l im  ln(Z/Zo) (3.1) 

where Z and Z 0 are the partition functions of the model two-phase system 
and of the reference one-phase system, respectively, while "lim" means the 
thermodynamic limit described above. 

The evaluation of Z and Z 0 for this one-dimensional system is again 
elementary by conventional transfer-matrix methods. We find at the ther- 
modynamic limit 

o / k T =  �89 In[1 + e 4s/kr sinh2(H/kT)] (3.2) 

By (2.3), this may also be expressed in terms of the bulk magnetization 
m(oe), 

o / k T =  ~ ln{1 + [m(m) - 2 -  1] - I  } (3.3) 

These formulas for o, like that for the profile in Section 2, are exact for the 
model two-phase system. 

We may call the derivative 

the surface energy, and decompose it into two parts E e 

E = E  e + E  i 

given, respectively, by 

{ ~30/kT ] sinh(H/kT) cosh(H/kT) 
E e = H \~3H/kT ]s/kr : - H  e_aS/k r + sinh2(H/kT ) 

and 

(3.4) 

and E i ,  

(3.5) 

(3.6) 

(c3alkTl = 2,/{1 + [e 2J/kr sinh(H/kT)] -2} - -1  
E i = J \~J /kT/n/k  r 

= 2Jm(oo) 2 

(3.7) 

The extrinsic surface energy E e is the difference, between the two-phase 
model and the one-phase reference system, of the energies of interaction of 
the spins with the respective external fields in the two systems; while the 
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intrinsic surface energy E,. is the corresponding difference, between the two 
systems, of the energies of interaction of the spins with each other. 

An important check of consistency is to note that E e may be directly 
evaluated from the profile m(z): 

E e = -  ~ [~g~'(z)m(z)-Hm(oo)] (3.8) 
Z.= --00 

with ~g'~(z) as in (1.1). From (3.8) with (1.3) and (2.1)-(2.3) we again obtain 
(3.6). 

Corresponding to (3.5) we may define a decomposition of rr into 
extrinsic and intrinsic parts, 

a = er e + a i (3.9) 

related to E e and E i ,  respectively, by the analogs of (3.4), 

= e e ,  \ = e ,  (3.10) 

Although there is no arbitrariness in the decomposition of E into E e and E; 
by (3.4)-(3.7), the decomposition of o into rre and rr i by (3.9) and (3.10) is 
arbitrary to within a constant multiple of kT, which may be added to one of 
these two components while it is subtracted from the other. With one choice 
of this arbitrary element we obtain from (3.6), (3.7), and (3.10), 

f l / k T  H ) .  sinh(Hx) cosh(Hx) 
oe/kT = e_4J x q- sinhZ(Hx ) dx (3.11) 

2Jf~/kr {1 + [e 2Jx s inh(Hx)]-2}-I  dx (3.12) Gi/ /kT = 

and we may now add an arbitrary constant (or function of J and H, but 
independent of T) to this crjkT provided we also subtract it from this oe/kT. 
But such an additional constant, if it were anything other than 0, would 
make either ai or o~ negative at high temperature, where the right-hand sides 
of (3.11) and (3.12), as they now stand, become small. 

The point of this decomposition of o is to remove from it, as far as 
possible, any artificialities due to the field ~g~(z), to make the resulting 
surface tension more properly comparable with that in systems in which 
phase separation is spontaneous. In the present model the field ~,~(z) 
contributes to the surface energy E of (3.4) in two ways, one essential and 
one incidental. Its essential effect is to create the interface of profile m(z) 
given by (2.1) and (1.3). Because of the inhomogeneity described by this 
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profile there is an excess spin-spin interaction energy, over that in the 
uniform reference system, of amount E i (>0) given by (3.7). This intrinsic 
surface energy still depends on H, but only because the profile does. There is 
an additional component of the surface energy, the extrinsic component Ee, 
also positive, which is the excess, over that in the uniform reference system, 
of the energy of interaction of the spins with the external field. This is the 
incidental effect of the field. Only that part of the surface energy that arises 
from the intrinsic structure of the interface, viz., E t, is comparable with the 
surface energy in a system in which phase separation is spontaneous. We 
now wish to do the same for the surface tension: to remove from a any 
incidental effect of the external field so as to identify that part which is due 
only to the structure of the interface. The two parts should both be proper 
free-energy excesses arising from the inhomogeneity, and therefore, in 
particular, should both be positive always. We saw that, as long as the 
decomposition is defined by (3.9) and (3.10), only the a e and a i of (3.11) 
and (3.12) satisfy this condition. We then take (3.12) to be the intrinsic 
interfacial free energy of the model. 

In the next section we imitate approach to a critical point, at which the 
surface tension vanishes. We find that a e vanishes more rapidly than a t, so 
the former becomes a negligible part of the total a and the decomposition of 
a is then inconsequential. 

4. APPROACH TO THE CRITICAL POINT 

At the critical point of a phase equilibrium the correlation length 
becomes infinite while the bulk-phase magnetization (or difference of the 
bulk-phase densities) vanishes. Thus, the interfacial thickness diverges at the 
same time that the amplitude of the profile vanishes, and the interface 
becomes infinitely diffuse. 

In the present model, for ~ to diverge requires 

J / k r  ~ oo, H/kT--~ 0 (4.1) 

by (2.2). For m(oo) to vanish at the same time requires, by (2.3), that H/kT  
vanish even more rapidly than exp(2J/kT) diverges, and so, more specifically 
than (4.1), 

J/kT--* oo, (H/kT) exp(ZI/kT) --* 0 (4.2) 

From the more restrictive conditions (4.2), which assure m(oo)-~ O, we have 
from (3.3), 

a/kT ~ ~m( oo ) 2 (4.3) 

so a/kT also vanishes, as at a real critical point. 
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This is true also with the G" of (3.12) in place of the total a. From 
(3.12), 

ai/kT = (2J/kT) ~ { 1 + [e 2Jy/kT sinh(Hy/kT)] --2} --1 dy (4.4) 

But H/kT vanishes faster than exp(2J/kT) diverges, according to (4.2), so 
H/kT vanishes faster than exp(Zly/kT) diverges, for all 0 ~ y ~< 1. Therefore, 
from (4.4), in the limit (4.2), 

(2.l/kT)(H/kr) 2 ~ y2e4"Y/kT dy ai/kT 

�89 2 e 4s/kr (4.5) 

so from (2.15), in the same limit 

ai/kT~ �89 ) 2 (4.6) 

This is the same as (4.3), as asserted. We conclude from (3.9), (4.3), and 
(4.6) that as the critical point is approached ae/kT vanishes even more 
rapidly than ai/kT does; that in this limit, therefore, ai becomes the whole of 
a; and that the decomposition of a into a e and a i is then inconsequential. 

The relation (4.3) or (4.6) between the interfacial tension and the bulk- 
phase magnetization may be compared with the general scaling relation ~ 

a / k r ~  K(A/kT) m(c~ )2/( (4.7) 

in which K is a positive constant of proportionality, and A/kT is related to 
the second moment of the direct correlation function e(r) in the bulk phases 
by 

A/kT= (1/2d) f r2e(r) dr (4.8) 

with d the dimensionality of the system. In (4.7) we have written m(oo) for 
Pt-Pg, the difference in density of the coexisting liquid and gas phases in 
the corresponding lattice gas, because p l = � 8 9  and pg= 
�89 + m ( - o o ) ]  = � 8 9  The argument of e(r) is the distance from 
some arbitrarily chosen central molecule or between centers of a pair of 
molecules. In mean-field or Ornstein-Zernike approximation d/kT  has a 
finite, positive limit as the critical point is approached, but more generally it 
diverges as 

A/kT ~ const ~" (4.9) 
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where "const" is a constant of proportionality, and where r/ is Fisher's 
exponent, tl~ which is 0 in Ornstein-Zernike approximation or in systems of 
dimensionality d>~ 4, and approaches 1 as d - ,  1. (1~) 

For the present model, the Fourier transform E(q) of the direct 
correlation function e(r) is readily calculated in closed form, with the result 
(in lattice-gas language) that in the phase of density p 

1 cos q - exp(-1/~)  s  _ _  + 
1 - p  p(1 - p )  sinh(I/~) 

Then from the discrete form of 

a / k r  = 

we find 

(4.8) in d = 1, 

z2c(z) = - �89 
z = l  

A / k T =  [2p(1 - p )  sinh(1/g)] i 

As the critical point is approached [i.e., as p-~ 1/2 and { ~  oo], we get 

A/kT ~ 2~ (4.10) 

Thus, we confirm (4.9) with t / =  1, as found by Nelson and Fisher(11); and 
we see that, with this specifically one-dimensional value of the exponent r/, 
our result (4.3) or (4.6) for the behavior of the surface tension on approach 
to the critical point is also in accord with the scaling relation (4.7). More 
specifically, from (4.3) [or (4.6)], (4.7), and (4.10), we have K =  ~. This 
value of the coefficient for d = 1 may be compared with the classical (9) 
K =  1/6, which holds for d> /4 ;  with Binder's (lz) estimate K-~0.092  for 
d = 3; and with the K ~- 0.0428 quoted by Binder (12) for d = 2. Our value for 
d = 1 is not a simple extrapolation of those for d > 1. 

We expect also that as the critical point is approached the asymptotic 
proportionality (9) 

a/kT~ ~-(d 1) (4.11) 

will hold for dimensionality d~< 4. This is equivalent to the exponent 
relation (9) /~ = ( d - 1 ) v ,  where v and p are the exponents that determine, 
respectively, the rate at which r diverges and that at which a/kT vanishes. 
This would give /t = 0 in our one-dimensional model (assuming v to be 
finite); and so from (3.9), for the exponent fl that determines the rate at 
which m ( ~ )  vanishes, we would have f l = 0 ,  as found by Nelson and 
Fisher m) for d =  1. 

The vanishing of the exponents p and fl, which are associated, respec- 
tively, with a/kT and m(oo), could mean either that the latter quantities do 
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not vanish as the critical point is approached, or that they do vanish but 
more slowly than any positive power of 1/~ (as l/in ~, for example). Our 
model is consistent with either and we may choose either at will. If m ( ~ )  is 
chosen to vanish, then so do a/kT  and ai/kT, by (4.3) and (4.6), while if 
m(c~) is chosen not to vanish, then (3.3) gives a/kT  also nonvanishing. We 
prefer to think of a/kT  and m ( ~ )  as vanishing, i.e., to specify approach to 
the critical point by (4.2) rather than by the less restrictive (4.1), because the 
resulting physical picture is then more closely analogous to that in a real, 
three-dimensional system. Also, if m(oo) is not taken to vanish we do not 
have the simple scaling (4.3) or (4.6), which is the one-dimensional form of 
(4.7). 

This exactly soluble model has proved to be fairly realistic in its 
description of the interfacial structure and tension, including their relation to 
each other and their behavior on approach to the critical point. The model 
should therefore be useful for testing approximations that are like those in 
common use in treating interfaces in three dimensions. That is the subject of 
Sections 5 and 6, in which we stud~ approximations to the profile and to the 
tension, respectively. 

5. APPROXIMATE PROFILE 

5.1. Corrected "Barometric Law" 

The simplest approximation to the magnetization profile m(z) in a 
nonuniform field ~ ( z )  would be the analog of the "barometric law": 

~ ( z  ) ~-- l[m(z ) ] (5.1) 

where the function I(m) is what would be the uniform field I were the system 
of uniform magnetization m. In the model we presented in Section 2, the 
external magnetic field is of the form ~,~(z) = H sgn(z) with ~ ( 0 )  = 0, so 
the approximation (5.l) would yield the trivial result m(z)=  m(~)sgn(z) ,  
m(0)---0, with m(c~) the bulk magnetization given by (2.3). The interface 
would thus be infinitely sharp. 

To obtain a nontrivial m(z) we must correct (5.1), and we do so in a 
way suggested by the van der Waals theory of interfaces.~9) We thus take as 
the first of the approximations we shall test: 

Am" (z ) : I[m(z ) ] - ~ ( z  ) (5.2) 
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where A is the constant given in (4.8) and is thus proportional to the second 
moment of the direct correlation function in either bulk phase, and where 

e 2J/kTm 
I(m) = kT arcsinh (1 - m2) 1/2 (5.3) 

from (2.3) and the definition of I(m). 
Because the assumptions underlying the van der Waals theory of 

interfaces are only reasonable in the neighborhood of the critical point, it 
will only be meaningful to discuss the van der Waalsian Eq. (5.2) in the 
critical region. We shall therefore take for the quantity A which appears in 
Eq. (5.2) the limiting expression (4.10) it assumes as the critical point is 
approached. 

Moreover, the appearance in (5.2) of a second derivative with respect to 
the spatial coordinate makes approximation (5.2) appropriate to a 
continuous space rather than to a discrete space. On the other hand, the 
exact expression of A calculated in Section 4 is only valid for the lattice gas, 
not for its continuous analog. For the latter, A cannot, unfortunately, be 
calculated exactly in a simple closed form. However, in the approach to the 
critical point, the distinction between discrete and continuous spaces 
disappears and consequently the limiting critical expression of A for a 
continuous space becomes identical to that of A for a discrete space. For this 
reason as well as for the one given in the previous paragraph, it will only be 
consistent to test the approximation (5.2) with A equal to the limiting 
expression (4.10) it assumes as the critical point is approached. 

In the ordinary van der Waals theory, phase separation is spontaneous, 
occurring in the absence of an external field, and in that case the term l(m) 
in (5.2) contains the loop corresponding to the metastable and unstable 
portions of the subcritical isotherm. However, in our present linear model, no 
spontaneous phase separation can occur because the range of the interactions 
is finite, and a spatially nonuniform external field is required to separate the 
phases. But if such a field is present, then the loop of the subcritical isotherm 
is no longer necessary to induce phase separation: its role is now played by 
the field. This comparison between these two cases is illustrated in Fig, 2. 

The numerical solution of Eq. (5.2) is given in Section 5.3. 

5.2. Nonlinear Potential Distribution Theory 

The approximate theory studied above is, like that of van der Waa!s 
which inspired it, a local theory: Equation (5.2) is the Euler-Lagrange 
equation deriving from a local free-energy density functional, i.e., a 
functional which depends on the density p(z) [magnetization m(z)] and its 



Field-Induced Phase Separation in One Dimension 431 

H I t 
�9 I I/' 

- 1  \ -  I +1 

/ ,o V l T l + , ~ ~  I --- m 
f 

t I I H 

/ 

Fig. 2. Illustration of the differences between the present approximate theory (5.2) and that 
of van der Waals. The dashed line represents the exact isotherm l(m) of the linear lattice gas 
and the solid line represents the function l ( rn ) -~ ,  while the dotted line represents the 
subcritical mean-field isotherm of the van der Waals theory. 

spatial gradient (d/dz)p(z) only through their values at z and not at 
neighboring points z'. This local character of the free-energy density 
functional reflects itself in the purely local z dependence of the terms 
entering Eq. (5.2). 

It has been shown (13) how the local van der Waals theory can be 
derived as a special limiting form of a more accurate nonlocal free-energy 
density functional. This derivation is based on the potential distribution 
theorem ~14) which, in one dimension and in the absence of an external field, 
reads 

p(z)/2 = (e */kr)z (5.4) 

where p(z) is the density at z, 2 is the spatially uniform thermodynamic 
activity and (e ,/kr)~ denotes the equilibrium average of e -*/~r with q~ the 
energy measured by a test particle at an arbitrary fixed point z in the system, 

In the presence of an external field ~ ( z ) ,  Eq. (5.4) generalizes to 

p(z)/2 = e-~r~/~r (e-*/kT)z (5.5) 

In the same mean-field approximation ~13) which enables one to derive 
the nonlocal version: 

p(z) (5.6) ~ 2p(z) = - 2 ~ p ( z )  + k T  In ,~(1 - p ( z ) )  

822/37/3-4 11 
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of what would be the van der Waals theory of the lattice-gas interface, 
Eq. (5.5) yields 

eAZp(z) = ~K(z) -- 2ep(z) + kTln p(z) (5.7) 
-p(z)) 

In Eqs. (5.6) and (5.7), AZp(z)-p(z+l)+p(z-1)-2p(z) is  the 
second-difference operator while e is the interaction energy of a pair of 
neighboring particles. The right-hand side of Eq. (5.7) is, apart from the 
external field ~ ,  the mean-field approximation to kTln[A(p(z))/2], with 
A(p) the activity of a lattice gas of constant density p. Apart from the 
presence of the second difference in place of the Laplacian, Eq. (5.7) is of the 
van der Waals type and the term in its right-hand side contains the mean- 
field loop. 

The same observation made in Section5.1 remains valid here: the 
unphysical mean-field loop contained in the right-hand side of Eq. (5.7) is 
made superfluous by the presence of the spatially nonuniform external field 
~ ( z ) .  Therefore, just as we did in the case of the local theory presented 
above in Section 5.1, we shall replace Eq. (5.7) by 

eA2p(z) = JF(z)  + kTln Ae• (5.8) 

with Aex(P ) the exact activity of a linear lattice gas of constant density p. 
The numerical solution of Eq. (5.8) is given in the following section. 

5.3. Comparison With Exact Results 

It will first be observed that the solutions m(z) or p(z) of the approx- 
imate equations derived above share with the exact profile the property that 
m"(z) or p"(z) is discontinuous at the origin z -- 0, although such a property 
is clearly not detectable to the eye. 

The interracial thickness ~ calculated in Section 2 is a monotone 
decreasing function of H/kT for fixed J/kT, in accord with a correlation 
inequality of Griffiths, ~15) and is a monotone increasing function of J/kT for 
fixed H/kT. 

The nonlinear differential and difference Eqs. (5.2) and (5.8) were 
solved numerically. For the differential Eq. (5.2) we provided the initial 
values m(z = 0) = 0 and m'(z = 0), whereas for the difference equation (5,8), 
m(z = 0) was set equal to 0 and a numerical value was given to m(z = 1). 
The value of m'(z = 0) or m(z = 1), respectively, was then varied until a 
solution of (5.2) or (5.8), respectively, was obtained with the desired 
asymptotic behavior. This procedure was first applied to a small number of 
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lattice sites and was repeated for an increasingly large number until 
satisfactory accuracy was achieved. 

Exact and approximate profiles are illustrated in Fig. 3 for a given value 
of H/kT and for two extreme values of J/kT appropriate to a critical and 
near-critical interface, i.e., values of H/kT and J/kT satisfying conditions 
(4.2). The local and nonlocal approximate profiles cannot be distinguished 
on the scale of these figures. Correspondingly a single approximate solution 
has been shown. It will be observed that, in accord with expectation, the 
agreement between the approximate and exact solutions is better the closer 
one is to the critical point (Fig. 3a), i.e., the better conditions (4.2) are 
obeyed. 

6. APPROXIMATE TENSION 

We now derive an analytic expression for the surface tension associated 
with the approximate profile derived from the corrected "barometric law" 
which was analyzed in Section 5.1. 

As in the usual form of the van der Waals theory, we postulate the 
existence of a local Helmholtz free energy 7S(z); assuming that the Gibbs 
dividing surface is located at z = 0, the surface tension ~ is then given by (9) 

fo 
a -- [W(z) - WL] dz + [W(z)-  We] dz (6.1) 

- - 0 0  

where 7JL(Wa) denotes the Helmholtz free energy of the bulk liquid (gas) 
phase. Integrating (6.1) by parts gives 

a = - z~'(z) dz (6.2) 
OO 

That functional ~({p}) which gives rise, in the variational problem of 
minimizing a as given by (6.1), to the Euler-Lagrange equation (5.2), is 

1 ! ~e({p(z)}) = eo({p(z)t) + ~Ap 2(z) + ~ ( z ) p ( z )  (6.3) 

where 7s0 is the exact free energy of a one-dimensional lattice gas of constant 
density p(z). 

Inserting (6.3) into (6.2) gives 

o = - f _ o o  dzz L--~p ( z ) .p ' ( z )+p ' ( z )~ ( z )+p(z )~ f ' ( z )+Np ' ( z )p" ( z )  
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and using Equation (5.2) yields 

I +~176 a = --2,4 dz zp ' ( z )p" ( z )  - [ ~ ( + c ~ )  - ~ ( - o o  dz zp(z) S(z) 
- - 0 0  - - 0 0  

(6.4) 

The last integral in (6.4) is 0, and integrating the first integral by parts gives 
the final result: 

a = A  dzp'Z(z)  (6.5) 
--OO 

We observe that expression (6.5) for the surface tension is identical in form 
to that (9) in the van der Waals theory derived for the case when no external 
field is present. As the above derivation leading to (6.5) clearly shows, this 
coincidence is due to our special choice of the external field ~ ( z ) ,  which is 
antisymmetric in z. 

Numerical values of the surface tension a as given by equation (6.5) for 
H / k T =  0.01 and for several values of the coupling constant J / k T  are given 
in Fig. 4, together with the exact values of a as given by Eq. (3.2). We 
observe again, as we did earlier for the density profiles, that the agreement 
between the approximate and exact surface tensions improves as the critical 
point is approached, i.e., as conditions (4.2) are more closely satisfied. 
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(6.5), respectively, for H/kT= 0.01 and various values of J/kT. 
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7. DISCUSSION 

It is natural to ask to what extent the results derived here for a linear 
system apply to higher-dimensional systems. 

Clearly it is the linear character of our lattice model of a fluid interface 
which enabled its density profile and surface tension to be calculated exactly, 
As is well known, the two-dimensional lattice-gas (Ising) model has not been 
solved exactly in the presence of an external field acting on all the particles 
(spins) of the system, even when that external field is spatially uniform. 

In spite of the purely technical difficulties which still prevent an exact 
solution of our model to be found in more than one dimension, we expect the 
form of the exact result for the density profile derived in Section 2 to remain 
valid in any number of spatial dimensions, provided there is an external field 
to suppress capillary waves of wavelength greater than some capillary length. 

This expectation is supported by earlier exact results on the problem of 
phase separation in the spherical model of the lattice gas. C~a'lu) The interface 
in this model was induced by an external field identical to the one we have 
chosen in the present model interface and it was shown that the density 
profile decays exponentially with a decay length equal to the correlation 
length of the spontaneous density fluctuations in either bulk phase. 

Finally, we also expect the exact results derived here for a lattice model 
to remain valid for continuous systems. A remarkable difference with the 
discrete case discussed here is that away from the critical point, the density 
profile is no longer symmetric; but we expect that each wing of the density 
profile decays exponentially with an exponent equal to the inverse correlation 
length of the pure phase at the corresponding extremity of the system. 
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